ON SOME ASPECTS OF CURVATURE

ANDREAS BERNIG

ABSTRACT. We survey recent results on generalizations of scalar, Ricci
and sectional curvature of a Riemannian manifold. Through the differ-
ent generalizations, several aspects of these curvatures will be revealed.
These aspects are of differential geometric, metric, integral-geometric,
measure theoretic and combinatorial nature. Several open problems
and some speculations about the possible developments of the theory
are formulated.

1. INTRODUCTION

One of the pleasant tasks of a mathematician is that of generalization.
Most often, there is no straightforward way of generalizing a mathematical
concept or object. One phenomenon which might occur is that one object
admits different generalizations, each of which shares some properties with
the original object, while other properties are not preserved. As a conse-
quence, one can better recognize and distinguish the various aspects of the
original object or concept. Even in the known, classical situation this can
lead to new insights. As an example, in distribution theory one generalizes
the notion of smooth function in order to obtain solutions of linear partial
differential equations and shows afterwards that these solutions are actually
smooth functions.

In this survey article, we will see how this was successfully worked out in
the last twenty years for the concept of curvature.

Most mathematicians would agree that curvature is a very difficult ob-
ject. However, it is not the definition which makes problems, but to get
a good feeling of what a curvature condition really means. On the other
hand, curvature is an important invariant in geometry and topology, with
a wide range of applications, for instance in Topology, General Relativity
or Computational Geometry. It is thus a promising task to shed some light
on curvature by looking at its various generalizations and by separating the
different aspects united in this single object. This separation will not be
very restrictive and the numerous relations between the different curvature
notions will provide some further information about curvature.

Before turning our attention to generalizations, we should say what we
understand here by curvature, i.e. describe more precisely what is the clas-
sical situation.
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Classically, curvature is thought of as a differential geometric, or better a
Riemannian invariant. To a Riemannian manifold, one associates numbers,
tensors or differential forms which are defined locally and which measure
the non-flatness of the space. The best known curvature expressions are the
Riemannian curvature tensor, sectional curvature, Ricci tensor and scalar
curvature. Besides these, there are curvature expressions which can be com-
puted from the Riemannian curvature tensor, for instance the integrand
in the Chern-Gauss-Bonnet theorem or the coefficients in the asymptotic
development of the heat kernel on a Riemannian manifold.

As was stated in [59], the generalization R€ of a curvature expression R
to a singular space X should satisfy the following two requirements:

e It should be an invariantly defined local measurement of the intrinsic
geometry of X which vanishes if X is flat.

e The significance of R® should be analogous to that of R. More
precisely, consider some formula which expresses a certain analytic,
geometric, or topological measurement of X in terms of R. If this
measurement still makes sense in the singular case, then the formula
should continue to hold with R replaced by R°.

We will see that there are different ways of obtaining generalizations which
satisfy the above requirements. Let us now see which aspects of curvature
are unraveled by generalizations. By doing so, we also give the plan of the
paper.

The first section is a very brief introduction to different curvature condi-
tions. We will recall the definition of the Riemannian tensor, Ricci tensor
and scalar curvature and some of the main theorems in the smooth situation.

The sectional curvature, although a difficult expression in the metric and
its derivatives, has a clear geometric meaning. The sectional curvature K (P)
of a two-dimensional subspace P in the tangent space 1, M of a Riemannian
manifold (M, g) measures how fast two geodesics whose initial velocities form
an orthogonal base of P spread at small times. This brings us to the metric
aspect of sectional curvature. As was said before, a generalization will in
general lose some of the initial properties. In our situation, we will see that
not the sectional curvature itself (as a numerical value associated to two-
dimensional planes) can be generalized to a metric space, but only the notion
of a lower or upper bound on the sectional curvature. The corresponding
metric spaces are called Alexandrov spaces with curvature bounded from
below or above.

In the second section, we will survey some of the development leading
to these spaces and several applications. As this is a very active field of
research, we will restrict ourselves to some of the main results, without any
completeness.

We now turn our attention to the scalar curvature. In the classical sit-
uation, it arises as average over all sectional curvatures in a point of a
Riemannian manifold. Thus, one gets a function on the manifold. Since the
process of averaging depends not only on the metric, but also on a measure,
there is no notion of scalar curvature on metric spaces. One should at least
consider metric measure spaces in the sense of [120], but even then there
seems to be no satisfactory theory. However, the idea of considering certain
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averages leads to a generalization of scalar curvature which shows that it
has an integral geometric flavor.

First, we consider the case of a compact embedded Riemannian manifold
(M, g) of dimension n, such that the ambient space is RY. Consider the
space of N — n + 2-dimensional affine spaces P in RY. It can be endowed in
a natural way with a measure which is invariant under the induced action
of the group of Euclidean motions of RY. For such a plane P in general
position, the intersection M N P is a two-dimensional manifold. We take the
Euler-characteristic of this intersection and average over all planes P. The
result will be, up to a constant, the total scalar curvature of (M, g):

/ Sgllg = CN,n/ x(M N P)dP (1)
M ON,N—n+2

We thus see that the total scalar curvature of M can be computed by
averaging Euler-characteristics of intersections of M with planes. Also local
versions of this linear kinematic formula exist and show that the scalar
curvature measure of M can be computed in a similar way.

It turns out that the right hand side of (1) is defined not only for compact
manifolds, but for a very large class of singular spaces, which contains,
among other spaces, subanalytic sets and convex sets.

The resulting scalar curvature is in general no longer a function, but a
signed measure, which shares many of the properties of the classical scalar
curvature of Riemannian manifolds. It also turns out that this measure is
in some sense independent of the way the set is embedded in an Euclidean
space.

We will develop these ideas in the third section, where we will explain
how the linear kinematic formula is generalized to subanalytic sets by using
stratified Morse theory and to convex and more general sets by Steiner type
formulas.

In the fourth section, we will look at scalar curvature from the viewpoint of
Geometric Measure Theory. The main idea is to associate to certain singular
subspaces of Euclidean space (or of a Riemannian manifold) a current in the
unit tangent bundle of the ambient space. This current carries metric and
topological information of the singular space. It opens the door for other
generalizations of curvature expressions. We will explain the different steps
which led to the construction of this so-called normal cycle of a singular
space.

The normal cycle is shown in the fifth section to be useful for generalizing
certain combinations of scalar curvature, Ricci tensor and Riemannian cur-
vature tensor to singular spaces. We will meet variational formulas related
to these curvature expressions which imply such seemingly different things
as Chern-Gauss-Bonnet theorem, Hilbert’s variational formula for the total
scalar curvature of a Riemannian manifold and Schlafli’s variational formula
for polyhedra.

In the sixth section, we make some notes about further generalizations
of curvature. In the non-commutative setting, there is a construction which
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formally looks a bit like the integral geometric interpretation of scalar curva-
ture. This is related to the nature of the total scalar curvature as a spectral
mvariant.

We consider combinatorial analogues of curvature due to Budach and
Forman; the approaches of Cheeger-Colding and Sturm-von Renesse to Ricci
curvature bounds and Delladios generalized Gauss graphs.

Finally, the last section is devoted to some questions concerning general-
ized curvatures.

At this point, the reader might wonder what relations exist between the
different generalizations of curvatures to singular spaces. There are indeed
a lot of them. For instance, in the subanalytic setting, the curvature bounds
from the metric theory imply curvature bounds for the (integral-geometric
generalization of the) scalar curvature. We will explicitly remark such links
at the place where they occur.

Resuming this introduction, we see that there are lots of generalizations
of the classical curvature from Riemannian geometry to a large class of
singular spaces. They reveal metric, integral geometric, measure theoretic,
non-commutative and combinatorial aspects.

2. DIFFERENTIAL GEOMETRIC ASPECT OF CURVATURE

Let us briefly recall the definition of the curvature tensor of a Riemannian
manifold (M, g). Let D denote the Levi-Cevita connection. Set R(X,Y)Z =
—DxDyZ + DyDxZ + Dixy)Z, where X,Y, Z are vector fields. Then R
is called (1, 3)-Riemannian curvature tensor. If X and Y are orthogonal
vectors spanning the plane P C T,M, K(P) := g(R(X,Y)X,Y) is called
the sectional curvature of P.

The trace of R is called Ricci curvature and is a (0,2)-tensor. Taking
again the trace, we obtain the scalar curvature, a smooth function on the
manifold.

It is clear from the definition that a curvature condition like positive
sectional curvature is stronger than positive scalar curvature.

We will in this section just scetch some of the most important relations
between curvature conditions and topology. A detailed survey with a large
bibliography on this subject is [21].

It is not known which manifolds carry a metric of positive sectional cur-
vature. Myer’s theorem states that an n-dimensional manifold of Ricci cur-

vature at least (n — 1)x > 0 has diameter not larger than Z=. Therefore,

it has finite fundamental group. This applies of course to manifolds with a
strictly positive lower bound on the sectional curvature. However, there are
only few examples of manifolds admitting a metric of positive sectional cur-
vature. Besides some exceptional cases, they are homogeneous manifolds.
One can completely classify the positively curved homogeneous spaces ([17],
[20], [160]). If there are many other examples, nobody knows.

Concerning non-negative curvature, the list is a bit longer. For instance,
one can take products of positively curved spaces and a longer list of homo-
geneous spaces.

For positive Ricci curvature, besides the finiteness of the fundamental
group and the conditions for positive scalar curvature, no other restriction
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is known. In the three-dimensional case, only quotients of spheres admit
Ricci-positive metrics by a theorem of Hamilton ([127]).

On the other hand, positive scalar curvature is better understood. One
can say precisely which simply-connected manifolds (of dimension > 5) ad-
mit a metric of positive scalar curvature. It depends on whether or not there
is a spinor structure and on the a-genus.

By the Cartan-Hadamard theorem, a simply connected manifold of non-
positive curvature is diffeomorphic to R™. The non simply-connected case
(in particularly the compact case) is a very rich and difficult subject with
relations to number theory.

The simplest case is that of negative Ricci curvature. By [135], every
manifold of dimension at least 3 admits such a metric. Thus, there are no
topological instructions or implications. This of course also solves the case
of negative scalar curvature.

3. CURVATURE BOUNDS ON METRIC SPACES

Historically, curvature was first considered as a metric concept. Gauss
tried to produce exact maps of the earth, i.e. he tried to find isometries
between parts of the sphere and portions of the plane. Using differential
geometry, he showed that this is impossible. Then the study of curvature
turned more and more to differential geometric aspects, with Riemann’s
curvature tensor and all the modern Riemannian geometry. Although there
were studies of Alexandrov on curvature bounds on metric spaces, the metric
aspects of curvature regained a larger attention only in the last 10-20 years,
thanks to the pioneering work of Gromov and others.

It is probably impossible to give a complete survey of this very active
research area. In any case, it would go far beyond the size, intention and
form of the present paper. Instead, I will try to focus on some main results
and present a short introduction into three different metric generalizations
of the notion of curvature to metric spaces.

We invite the reader to have a look in the books [32] and [45] for most
of the material in this section. The first one concentrates on spaces with
upper curvature bound, whereas the second one treats also the case of lower
curvature bounds. In the classical book by Alexandrov ([3]), many of the
notions discussed below are introduced and studied. Other references are
[3], [46] and [141].

3.1. Basic notions. A metric space is called inner or intrinsic metric space
or length space if the distance between two points is given as the infimum
over the length of rectifiable curves between them. A geodesic in an inner
metric space is an isometric embedding of an interval. If any two points can
be joined by a geodesic, the space is called geodesic. Hopf-Rinow Theorem
states that a complete, locally compact length space is geodesic.

The most important notion in comparison geometry is that of a compari-
son triangle. Given three points a, b, ¢ in a metric space (X, d), the triangle
inequality implies that there are three points @, b, ¢ in Euclidean plane re-
alizing the same pairwise distances. Such a triangle is well-defined up to a
rigid motion of the plane. It is called comparison triangle. If (X, d) is geo-
desic and if we are given a point g on a geodesic between two of the three
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points, say between a and b, then there is a point on the line between a and
b realizing the same distances. Such a point is called comparison point.

The angle at a of a triangle a,b,c is defined as the angle at @ of the
comparison triangle and denoted by Z,(b, ¢).

Instead of comparing with Euclidean plane, one can also compare with
another model space of constant curvature k, i.e. with a hyperbolic plane
(if kK < 0) or a sphere (if x > 0). In the last case, one has to bound the
diameter of the triangle in order to assure the existence of a comparison
triangle. The corresponding angles will be denoted by £*.

Given two geodesics 71,72 with 71(0) = 72(0) = a € X, we define the
upper angle between 71,72 at a by

Za(71,72) = limsup Za(71(£),72(t))
t1,t2—0

The upper angle defines a pseudo-distance on the space of geodesic germs
at a, i.e. it satisfies all axioms of a metric except the fact that two germs
can have distance 0 while being different. This happens for instance on a
very tiny cone. For instance, rotate the curve y = 2, > 0 around the
r-axis, then any two geodesics on the rotation surface have upper angle 0
at the origin.

3.2. Alexandrov surfaces. The Gauss-Bonnet theorem for two-dimensional
Riemannian manifolds implies that the total (Gaussian) curvature K in a
geodesic triangle is given by the angle defect:

/K:a—{—ﬁ—i—v—ﬂ
A

Alexandrov uses this to define a much wider class of spaces, in which curva-
ture bounds exists, but only in a measure-theoretic sense. For this, let (X, d)
be a geodesic metric space. Suppose that X is a two-dimensional topological
manifold. Consider an open neighborhood U in X which is homeomorphic
to an open disc in the plane. A geodesic triangle A in U consists of three
points a, b, ¢ and three geodesics [ab], [bc], [ac] between them. The triangle
separates U in an inner and an outer part, the union of the geodesics being
the boundary of both parts.

The triangle is said to be simple if the shortest curve joining two points
on the boundary and staying outside the triangle is given by a path on the
boundary. The upper angle excess Def(A) is defined as the sum of the three
upper angles at the vertices minus 7.

The space (X,d) is said to be an Alexandrov surface if for each point
p € X there exist an open neighborhood U, homeomorphic to an open disc
in the plane, and a real number K (p) such that for any finite collection of
simple geodesic triangles Aq,..., Ay in U with disjoint interiors, the sum of
the angle excesses is bounded by K (p):

k
S [Def(a)] < K ()
=1

Intuitively, this inequality says that the total amount of curvature in U
is bounded from below and above.
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By counting only those triangles with positive (resp. negative) angle
excess, one gets two measures whose difference is a signed measure, called
curvature measure of the Alexandrov surface.

In Section 4, another definition of curvature measures is given for the class
of semialgebraic (and more general) sets. By a result of Brocker-Kuppe-
Scheufler ([34]), a two-dimensional semialgebraic topological manifold is an
Alexandrov surface in the above sense and both definitions of curvature
measure agree. The proof of this nice result includes a study of geodesics
and a version of the Gauss-Bonnet theorem on such spaces. Since also for
Alexandrov’s measure there is a Gauss-Bonnet theorem, comparison yields
(modulo some technical difficulties) that both measures are equal.

3.3. Gromov-Hausdorff distance. The space of compact metric spaces
carries a very natural metric, first defined by Gromov. Let X,Y be closed
subspaces of a metric space Z. Their Hausdorff-distance is defined by

dp(X,Y)=inf{e>0: X C V(Y),Y C Vi(X)}

where V, stands for the e-neighborhood.

The space of closed subsets of a compact metric space, endowed with the
above distance, is again a compact metric space.

In order to define the Gromov-Hausdorff distance of two compact metric
spaces X and Y, consider all metrics on their disjoint union which induce the
given metrics on X and Y. Then the infimum over the Hausdorff distances
of X and Y is the Gromov-Hausdorff distance.

The Gromov-Hausdorff distance between two compact metric spaces van-
ishes if and only if the spaces are isometric. The set of (isometry classes
of) compact metric spaces is therefore itself a metric space (but fortunately
not a compact one, this avoids a paradox a la Russell). Still it is true by
a theorem of Gromov that a sequence of uniformly compact metric spaces
has a convergent subsequence. Here uniformly compact means that for each
e > 0, each space in the sequence can be covered by at most N(e) balls of
radius e.

Using Bishop-Gromov volume comparison, one obtains the following com-
pactness theorem.

Theorem 3.1. (Compactness theorem of Cheeger-Gromov) ([120])
The set of isometry classes of compact Riemannian manifolds of dimension
n, with diameter bounded from above by D > 0 and with Ricci curvature
bounded from below by r € R is precompact with respect to Gromov-Hausdorff
metric.

The most spectacular applications of this theorem (like Cheeger’s finite-
ness theorem [49]) use the stronger condition that the sectional curvature is
bounded from below. In the next subsection, we will see a compactification
of the corresponding space of Riemannian manifolds.

For a lower bound on the Ricci curvature only, the theory is only at its
beginning, see 7.3 for some information on this subject.

3.4. Curvature bounded from below. Consider the space of all Rie-
mannian manifolds of a fixed dimension with a lower bound on the sec-
tional curvature K > £ (and upper bound on the diameter). As a corollary
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of Cheeger-Gromov’s compactness result, this space is precompact for the
Gromov-Hausdorff distance. In order to find a compactification for this
space, it is natural to try to express the (differential geometric) condition
K > k in terms of the metric. This is indeed possible and is known under
the name of Toponogov’s comparison theorem, we will formulate this below
for metric spaces.

An equivalent formulation is the following:

Proposition 3.2. (4 point condition)

Let M be a Riemannian manifold with sectional curvature K > k. Then
for any point x € M, there is an open neighborhood U of x such that for
any 4 points P, A, B,C in U, the following inequality is satisfied:

/5%(A, B) + £5(B,C) + £5(C, A) < 21 2)

We say that an inner metric space has curvature bounded from below (or is
an Alexandrov space with lower curvature bound k) if either the above 4-point
condition (2) is satisfied or if the space is isometric to a one-dimensional
manifold of diameter at most Z=. The latter case is needed for several
induction arguments. The definition of Alexandrov spaces is of local nature,
but we will see that there are strong global conclusions.

Proposition 3.3. A locally compact geodesic space is a space of curvature
> k if and only if each point admits an open neighborhood U such that for
each geodesic triangle a,b,c in U and for each point p on the side ab, one
has

d(p, c) > d(p, ¢)

Here p is a comparison point for p on a comparison triangle abc in the space
of constant curvature k.

This condition is satisfied for manifolds with sectional curvature bounded
from below by x (Toponogov’s theorem).

In the manifold case, a lower bound x on the sectional curvatures implies
the lower bound (n — 1)k on the Ricci curvature. If k > 0, Myer’s theorem
then implies that the diameter is bounded from above by ﬁ The same
conclusion is true for Alexandrov spaces with a positive lower curvature
bound. Let (X,d) be an Alexandrov space with curvature > x > 0. Then
the diameter of X is at most —=.

The proof of this version of Myer’s theorem is easy if one uses the impor-
tant globalization theorem.

Theorem 3.4. (Globalization theorem)

Let (X,d) be a complete Alexandrov space with curvature bounded from
below by k. Then inequality (2) is satisfied for any 4 points of (X,d) (such
that the angles are defined in case k > 0).

The proof is “by induction” on the size of 4-points configurations.

The direct product of two Alexandrov spaces of non-negative curvature
is again an Alexandrov space of non-negative curvature.

For Alexandrov spaces with curvature bounded below, there is a dimen-
sion theory based on the notion of burst points.
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Definition 3.5. Let (X,d) be an Alexandrov space of curvature > k. An
(n,0)-burst point is a point p € X such that there exist n pairs of points
a;, b;, distinct from p such that

Lg(ai,bi) > — 0, Ag(ai,aj) > g — 9, lg(ai,bj) > g — 9, Zg(bi,bj) > g -4

An (n, d)-burst point looks, up to the error §, as the origin of R", together
with one point on each coordinate (half-) axis.

If in the neighborhood of a point p € X there exist (n,d)-burst points
for every § > 0, and if n can not be replaced by n + 1, then n is called
the burst index near p. It plays the role of a dimension. The next theorem
shows that a space with lower curvature bound has everywhere the same
local dimension.

Theorem 3.6. The burst indices near different points of X are equal and
coincide with the Hausdorff dimension of X.

For finite dimensional Alexandrov spaces with curvature bounded below,
the completion of the space of germs of geodesics emanating from a fixed
point, equipped with the (upper) angle metric, is called space of directions
and the cone over it the tangent space of the point. The space of directions
has curvature at least 1, whereas the tangent space has non-negative curva-
ture. More generally, the cone over a space of curvature > 1 has curvature
> 0.

The next theorem shows that the space of Alexandrov spaces is indeed a
compactification of the space of Riemannian manifolds with corresponding
curvature bounds.

Theorem 3.7. (Compactness theorem)
The space of all complete Alexandrov spaces with curvature bounded below by
K, dimension not greater than n and diameter not greater than D is compact
with respect to Gromov-Hausdorff distance.

The idea and difficult part of the proof is to show that the space is uni-
formly compact in the sense described above and to apply the general pre-
compactness theorem for Gromov-Hausdorff distance. For this, one studies
the rough volume and the rough dimension of the space, which are defined
in a way similar to Hausdorff measure and Hausdorff dimension, but instead
of coverings one takes packings by balls of a given radius. The precise value
of the volume seems to play no role, but, by proving an upper bound for the
rough volume of a finite dimensional complete space with curvature bounded
below, one can establish an upper bound for the number of disjoint balls.
This is done by an easy inductive argument by passing to spaces of directions
(which are of lower dimension). Since this bound depends only on &, n, D,
we get the precompactness. On the other hand, the globalization theorem
implies immediately that limit spaces of sequences of spaces with curvature
bounded from below by x have again curvature bounded from below by k.
The analogous statement is true for the dimension and the diameter. O

The boundary of a finite dimensional Alexandrov space with curvature
bounded below is defined inductively over the dimension. A one-dimensional
Alexandrov space is a manifold and the boundary is to be understood in the
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usual sense. In a higher-dimensional Alexandrov space, a point is a boundary
point if the space of directions has a non-empty boundary.

A difficult theorem by Petrunin ([143]) shows that one can glue two
Alexandrov spaces along isometric boundaries:

Theorem 3.8. (Gluing theorem) Let X,Y be Alexandrov spaces of the
same dimension and curvature > k with isometric boundaries. Then the
gluing of X and Y along their boundary is again a space with curvature
> K.

This theorem is an application of the concept of a quasi-geodesic as de-
fined in the unfortunately unpublished preprint [142]. Intuitively, geodesics
are locally shortest curves, whereas quasi-geodesics are locally straightest
curves. For manifolds, both concepts are the same, but not for Alexandrov
spaces. The advantage in working with quasi-geodesics is that there are
quasi-geodesics through every point and every direction and they can be
extended through their endpoints. These properties are in general false for
geodesics.

Another type of gluing theorem is proved by Kosovskii ([134]). Here one
considers two manifolds with boundary such that the sectional curvature of
both of them is bounded from below by s and such that the boundaries are
isometric. Kosovskii gives a necessary and sufficient condition such that the
gluing along the boundary is an Alexandrov space with curvature bounded
from below by k. This condition can be expressed in terms of the second
fundamental forms of the boundaries and appeared also (in the subanalytic
setting) in [22].

3.5. Curvature bounded from above. The theory for spaces with upper
curvature bounds is similar as long as basic properties (products, tangent
cones) are concerned. However, although the definitions are almost the same
(up to a sign), the deeper parts of both theories are quite different.

Definition 3.9. A space of curvature > k is a metric space such that
for each point p there exists an open ball B(p,r) such that B(p,r) with the
induced metric is geodesic and such that for each geodesic triangle a,b,c in
B(p,r) and for each point p on the side ab, one has

d(p, c) < d(p, ¢)

Here p is a comparison point for p on a comparison triangle abc in the space
of constant curvature k.

A space where this comparison condition holds globally is called CAT(k )-
space. Here we see a first difference: there is no theorem analogous to the
Globalization theorem (3.4). However, if a complete metric space is simply
connected, then the local condition for x = 0 implies the global one. This is
known as Cartan-Hadamard theorem and was proved (with different degrees
of generality) by Cartan-Hadamard ([47], [126]), Gromov ([115]), Ballmann
([12]) and Alexander-Bishop ([2]). It can be used to show that the universal
covering of a compact Riemannian manifold X is contractible: just put a
metric of non-positive curvature on X (if it exists).
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Tangent spaces and spaces of directions are defined in an analogous way
to the case of spaces with lower curvature bound. The space of directions
of a space with upper curvature bound has non-positive curvature.

Different notions of dimension are studied in [132]. It is in general not
possible to triangulate a space with upper curvature bounds, see [138] for a
two-dimensional example.

Reshetnyak’s gluing theorem ([150]) states that the gluing of two (com-
plete locally compact) metric spaces with the same upper curvature bound
along isometric convex subsets has the same upper curvature bound.

This theorem was used in the study of semi-dispersing billards by D.
Burago, S. Ferleger and A. Kononenko in a long series of papers ([38], [39],
[40], [41], [42], [43], [44]). The beautiful ideas involved in these studies are
explained in the survey ([37]).

A semi-dispersing billard consists of a complete Riemannian manifold M
of non-positive curvature and with positive lower bound on the injectivity
radius together with a locally finite collection of smooth convex subsets. A
point in such a billard moves in the complement of the convex subsets until
it hits some of them. It then gets reflected according to the law of reflec-
tion. The study of systems of particles can be reduced to such a situation
by considering billards in higher dimensions. For instance, the hard ball
model consisting of a finite number of round balls moving freely and collid-
ing elastically in a box or in empty space is such a semi-dispersing billard
(cf. [37]).

Under a certain non-degeneracy condition for a semi-dispersing billard,
it is shown that there exists an upper bound for the number of collisions
near every point of the billard. For a global result, one assumes furthermore
that the intersection of the convex subsets is non-empty. Then there is an
upper bound (depending on the geometry of the billard) for the number of
collisions of a trajectory.

To obtain such bounds, one glues several copies of M along some of the
convex subsets. The resulting space has non-positive curvature by Reshet-
nyak’s theorem. Trajectories are transformed to local geodesics in this space.
The technical difficulty lies in the fact that one can not work with only one
space obtained from finitely many gluings of M, since this would require
to glue the “ends” of several gluings, which is not covered by Reshetnyak’s
theorem. To overcome this difficulty, one develops a given trajectory and
glues the space only along the convex sets which are hit by it. Then one ap-
plies several theorems for non-positively curved spaces to obtain the bounds
mentioned above.

Other exciting applications of CAT-spaces and spaces with curvature
bounded above are related to group theory and to the large-scale behav-
ior. For the latter, one studies the boundary at infinity of a CAT-space, it is
given by certain equivalence classes of geodesic rays. This can be done in an
even more general setting, that of d-hyperbolic spaces. Each CAT(k)-space
with k£ < 0 is such a §-hyperbolic space. Then one can put a quasi-conformal
structure on the boundary etc.

Concerning the relation to group theory, we mention that one can put a
metric (so called word metric) on each finitely generated group. This metric
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depends on the choice of generators, but it is unique up to a bi-Lipschitz
map. If the group, endowed with this metric, is a d-hyperbolic space, then
there are several striking consequences, for instance for the word problem.

Since this does not match our definition of curvature as a local measure-
ment of non-flatness, we do not go into details and refer the reader to [32],
[30], [120].

4. INTEGRAL GEOMETRIC GENERALIZATIONS OF CURVATURE

4.1. Steiner’s formula. A curios historical fact is that Steiner found a
“generalization” of the notion of curvature in 1840, twenty years before Rie-
mann introduced his famous curvature tensor. (Of course, Gauss was even
earlier, but only in the two-dimensional situation).

Steiner’s result concerned compact convex subsets of Euclidean space. Let
K C RY be a compact convex set. For any r > 0, the parallel body K, is
defined as the set of points at distance at most . This is again a convex set.
Then, as Steiner proved, the N-dimensional volume of K, is a polynomial
in r:

vol(K. ZA Yo — N (3)

Here the by_; are convenient normahzatlon factors, given by the volume of
the N — i dimensional unit ball. The A;(K) are invariants of K, which are
nowadays called Lipschitz-Killing curvatures.

4.2. Terminology. Before we continue, a small digression on terminology.
Since the time of Steiner, quite a few situations were considered where some
invariant appears as coefficient of some (maybe modified) tube volume poly-
nomial. As a consequence of different backgrounds (convex, differential geo-
metric etc.) and of different normalizations, different names were attributed:
Minkowski’s Quermasse (transversal measures), Steiner functionals, intrin-
sic volumes,... Since we do not want to confuse the reader with this, we
will speak of Lipschitz-Killing curvatures (or invariants) in all situations (it
will become clear why we speak of curvatures). The other invariants can be
obtained by renormalization.

We also remark that a very detailed exposition of most of the material
described in this and the next section is [137].

4.3. Principal kinematic formula. The Lipschitz-Killing curvatures be-
have like volumes, more precisely A; behaves like an i-dimensional volume
even for sets of different dimensions. For instance, it has the same scaling
property A;(tK) = t*A(K). If K,L and K U L are compact convex, then

The most important formula for Lipschitz-Killing curvatures of com-
pact convex sets is the principal kinematic formula of Chern, Santalé and
Blaschke. Consider two compact convex sets K and L in the same Euclidean
space RV, Leave K fixed and move L by rigid motions. Then average (with
respect to a natural invariant measure of the group of rigid motions) over a
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Lipschitz-Killing curvature of the intersection K N gL. Then the result can
be expressed only in terms of the Lipschitz-Killing curvatures of K and L:

[ At nglydg = 3" (N, WA (L) (5)
i+j=N+k

The constants ¢(N, i, 7, k) only depend on N, 1,7, k, but not on K, L.

For a survey on recent results concerning this formula, see [130].

Taking for L a closed ball of radius r > 0, one easily obtains that A;(L) =
¢(N,4)r’. Replacing this into the principal kinematic formula, we obtain the
tube volume polynomial (3). The principal kinematic formula is therefore a
generalization of Steiner’s formula.

4.4. Self-intersections of the tube. The natural question is for which
other sets such formulas hold true. If you think of the union of two disjoint
compact convex sets, the r-tube of the union will be the union of the r-tubes.
As long as there is no intersection of the tubes, i.e. for r smaller than half
the distance between the sets, the volume of the tube is still a polynomial,
by Steiner’s formula. But as soon as such an intersection occurs, the tube
volume stops being polynomial. We should therefore consider compact sets
where such a self-intersection of the tube does not occur. Stated otherwise,
we need that each point in RY has a unique foot-point on the set. However,
these sets are precisely the compact convex sets. The hypotheses of Steiner’s
theorem can therefore not be relaxed.

It seems that this is already the end of the story. But it is only the
beginning! Even if the tube volume is not polynomial for all r, it may
be polynomial for sufficiently small radius. This will indeed be the case
if self-intersections of the tube are only at a positive distance of the set.
The example of two disjoint compact convex sets considered above was an
example for this.

4.5. The smooth case. Another example for a set having the property
that self-intersections occur only at positive distance is that of a compact
submanifold (with or without boundary). Upper bounds on the eigenval-
ues of the second fundamental form imply that there are indeed no self-
intersections for small distances. The proof that the corresponding tube
volume is really polynomial for small radii » was obtained by Hermann
Weyl in 1939. This was an easy computation using transformation of vari-
ables, or with his words: So far we have hardly done more than what could
have been accomplished by any student in a course of calculus. What is more
important and difficult is that the coefficients of the polynomial (using suit-
able normalizations) can be expressed as integrals over some polynomial in
the curvature tensor. This implies that they are independent of the embed-
ding. Weyl’s proof of this fact uses the theory of invariants. We call these
coefficients again Lipschitz-Killing invariants. Since we can integrate the
polynomial in the curvature tensor over any Borel set of the manifold, we
obtain a signed Borel measure, called Lipschitz-Killing measure.

Several of the Lipschitz-Killing curvatures are well-known invariants of
a compact n-dimensional Riemannian manifold (M, g). Let us suppose for
simplicity that there is no boundary. Then, as H. Weyl noticed, A,,_;(M)



14 ANDREAS BERNIG

vanishes for odd i. Also A;(M) = 0 for i« > n. From the tube formula
one trivially obtains A, (M) = vol(M). Furthermore, and this will play an
important role later on, A,_o(M) = 47 [, spg, where s is the scalar curva-
ture of M and p, the volume density. The integral on the right hand side
is known as total scalar curvature of M and plays a fundamental role in
General Relativity (Einstein-Hilbert functional). Another Lipschitz-Killing
invariant which yields a known quantity is Ag(M) = x(M). Hermann Weyl
was unaware of this fact, but Allendoerfer ([5]) immediately showed this
equality. Expressing Ao(M) as integral over a polynomial in the curva-
ture tensor yields the Chern-Gauss-Bonnet theorem, generalizing the classic
Gauss-Bonnet theorem in dimension 2 to any dimension. A different proof,
not using an isometric embedding of the Riemannian manifold in Euclidean
space, was obtained by Chern ([63]).

The principal kinematic formula (5) remains true for compact Riemannian
(sub-) manifolds. Remark that the intersection of two submanifolds M, N is
not necessarily a submanifold. But for almost each rigid motion g, M N gN
is again a submanifold, so that the principal kinematic formula makes sense.

4.6. Sets with positive reach. As we have pointed out, a submanifold has
the property that at small distances, there are no self-intersections of the
tube. Such sets are called sets with positive reach. The precise definition,
due to Federer ([87]), is the following:

Definition 4.1. The reach of a subset K of RY is the largest r > 0 such
that if x € RN and the distance from x to K is smaller than r, then K
contains a unique point nearest to x.

By using geodesic distance instead of Euclidean distance, one can define
sets of positive reach on Riemannian manifolds in the same way. Bangert
gave a different characterization from which it follows that this property
does not depend on the Riemannian metric ([16]).

As Federer showed, the volume of an r-tube around a set with positive
reach is a polynomial as long as r is not bigger than the the reach of the
set. This result generalizes the formulas of Steiner and Weyl, since compact
convex sets have reach oo and compact submanifolds have positive reach.

The idea of Federer’s proof is the following. First he notices that for
a set K of positive reach, the boundary 0K,, of the parallel body K,,
with 7o positive and smaller than the reach of K is a C'-manifold with
Lipschitz normals. By an argument as in Weyl’s proof, the volume of the
parallel body of K,, is a polynomial for sufficiently small radii. Thus, for
ro < r < reach(M), vol K, = vol(K,,)r—r, is @ polynomial in r. Since this
is true for each 0 < ry < reach(K), we get Federer’s tube formula.

Again, the principal kinematic formula (5) holds true in this setting. Here
one needs that the intersection K N gL is of positive reach for almost all g,
provided K and L are of positive reach.

Federer did not only consider real valued invariants but also measures.
For this, instead of looking at the whole r-tube around a compact set K of
positive reach, one looks only at those points in the tube whose foot-points
lie in a given Borel subset of RY. This yields (signed) Radon measures
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A (K, —) supported on K. Federer called them Curvature measures of K,
here we will speak of Lipschitz-Killing measures.

4.7. Convex ring and PL-case. Although the class of sets of positive
reach is natural and big, there are many sets not contained in it. For in-
stance, it is not closed under finite unions (take the union of two touching
balls). Also PL-spaces are in general not of positive reach. Real algebraic
or semialgebraic sets have different kinds of singularities and are not of pos-
itive reach. To treat these classes, a new idea was needed, that of counting
multiplicities.

Remember the example of the union of two disjoint compact sets. The
problem for large tubes was the self-intersection of the tube. Taking the
volume of the union, it is smaller than the sum of the volumes of the two
tubes. But counting the intersection with multiplicity 2, we will get the right
formula even for big tubes. This idea of counting multiplicities indeed works
well for very large classes of singular spaces, such as the classes considered
above.

Let us first consider the convex ring. It consists of all finite unions of
convex sets. This class is clearly closed under finite unions and intersections.
Let K = U;K; be such a finite union. If we want the tube volume to be
Euler-additive, i.e. to satisfy the analogue of formula (4), then we have to
count the volumes of the tubes of the different K;, subtract the volumes of
the intersections, add the volumes of intersections of three of the sets and
so on (inclusion-exclusion principle). Since the tube of an intersection is
the intersection of the tubes, and since each tube volume is polynomial, we
will get a polynomial expression for the whole tube, which is counted with
multiplicities.

The problem with this approach is that there might be several ways to
write a given set as union of compact convex sets and it is not clear why the
tube volumes should agree. But from the additivity of the Euler character-
istic it follows by simple counting that the multiplicity with which a point
r € R is counted in the r-tube is precisely x(B(z,r) N K).

Starting with this idea, Schneider constructed Lipschitz-Killing invariants
on the convex ring ([156]). Here again, the principal kinematic formula is
satisfied. In the PL-case, i.e. the case of finite simplicial complexes of
RY | these invariants were also introduced by Banchoff, Cheeger, Wintgen
and studied further by the team Cheeger-Miiller-Schrader. One of these
invariants, the scalar curvature, appeared even earlier in the work of Regge
([149]). In all cases, these invariants can be localized to Lipschitz-Killing
measures.

In the PL-case, the Lipschitz-Killing invariant A;(K) is obtained by sum-
ming the volume of all i-faces multiplied by some exterior angle. Lipschitz-
Killing measures can be defined in a similar way. One of the results of [59]
was to show that there is also an expression in terms of inner angles. This
shows that A;(K) only depends on the inner geometry of K and not on the
particular embedding in an Euclidean space. We can say that this is the
PL-version of Weyl’s result concerning the intrinsic character of Lipschitz-
Killing curvatures of smooth manifolds.
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The main result of [59] is an approximation result relating the PL and
the smooth case. For this, start with a compact Riemannian manifold and a
sufficiently fine triangulation. Endow the triangulation with a PL-structure
such that the lengths of edges are given by geodesic distances on the mani-
fold. Cheeger-Miiller-Schrader show that by taking sufficiently fine and fat
triangulations, such a PL-structure exists. Now consider a sequence of such
PL-approximations which gets finer and finer but whose fatness remains
bounded from below. This means that the simplexes should not become
too flat. Then the Lipschitz-Killing measures converge to the corresponding
measures of the Riemannian manifold.

The proof of this beautiful result has three steps. First, it is shown that
the limit measure is independent of the chosen sequence of approximations.
Here a generalized Schléfli formula (they call it Regge formula) plays an im-
portant role. We will see in later sections that this formula can be obtained
and generalized by using a very general variational formula for Lipschitz-
Killing curvatures. In the second step it is shown that the resulting measure
can be written as fuy, where f is a polynomial expression in the curvature
tensor. Finally, sufficiently many properties of f are established to ensure
that f is the Lipschitz-Killing curvature of M. For this last step, one uses
a characterization of Lipschitz-Killing curvatures due to Gilkey.

In another paper ([60]), Cheeger-Miiller-Schrader showed that kinematic
and tube formulas hold for PL-spaces. We will come back to this point in
the next section.

4.8. Finite unions of sets with positive reach. Instead of taking finite
unions of convex sets, one also can take finite unions of sets with positive
reach. This was elaborated by M. Z&hle in [163]. Here one needs the condi-
tion that each intersection itself has positive reach. The set of such unions
is denoted by Upg.

As in the case of the convex ring, there is at most one way to generalize
Lipschitz-Killing invariants to this class. The problem is to show that the
result is well-defined, i.e. does not depend on the representation of the set
as finite union of sets with positive reach.

This problem can be solved by means of a certain index function, which
was introduced for the convex ring by Schneider. This function can be com-
puted by limits of certain Euler-characteristics and is therefore independent
of the representation of the set. Then Zahle shows that the Lipschitz-Killing
invariants (and measures) can be obtained by integration over the normal
cycle of the set. We will say much more about this construction in the next
section. Zahle could show the principal kinematic formula for finite unions
of sets with positive reach, including of course the tube volume formula.
The multiplicity of a point is given in terms of the index function.

4.9. Subanalytic and Whitney-stratified sets. In all the situations we
considered above (convex, positive reach, PL, convex ring, finite unions of
positive reach), we counted multiplicities in the tube by the Euler charac-
teristic of the intersection with a closed ball. The resulting tube volume was
a polynomial. For this we need that this Euler characteristic is well-defined
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and in some sense uniformly bounded, at least integrable. The classes of
semialgebraic or subanalytic sets have this property.

Recall that a set which can be described by a finite Boolean combination
of polynomial equalities and inequalities is called semialgebraic ([75]). Re-
placing polynomials by analytic functions, we get the notion of semianalytic
set. Subanalytic sets are defined as projections of semianalytic sets under
proper analytic maps ([29]).

A generalization of these classes is that of an o-minimal structure. An
o-minimal structure is given by a class of sets in RY, for each N =1,2,...,
which are called definable. The class has to be closed under unions, inter-
sections, taking complements and under projections on lower-dimensional
spaces. Furthermore, it is required that the graphs of addition and multi-
plication belong to the structure. The o-minimality is the hypothesis that
the definable sets of R are precisely the finite unions of points and intervals.

Examples for o-minimal structures are the class of semialgebraic sets and
the class of those subanalytic sets which remain subanalytic in the projective
closure of Euclidean space. Another example is the class of sets defined by
polynomials and the exponential function.

Definable sets, i.e. sets belonging to some o-minimal structure, have
several nice properties. We refer to [74] for an introduction to this theory,
as well as to [84],[85]. For our purposes, we need the following facts.

Definable sets can be stratified, i.e. written as locally finite union of
submanifolds, called strata. The frontier condition is that the closure of
each stratum is the union of the stratum and lower-dimensional strata. It
is possible to stratify these sets such that Whitney’s condition ([84]) and
Verdier’s condition ([159]) are satisfied.

Also there are finiteness properties. For instance, in a definable family, the
Euler-characteristic is uniformly bounded. It makes thus sense to consider
the modified tube volume [ x(X N B(x,r))dz for a definable set X.

It was first shown by J. Fu (in the subanalytic case) that this tube volume
is indeed a polynomial in . We will come back to his investigations in the
next section.

Two-dimensional semialgebraic sets were considered by Brocker-Kuppe-
Scheufler ([34]). Based on the wing-lemma, they first showed a Gauss-
Bonnet-formula for such spaces. The main theorem is that two-dimensional
semialgebraic sets are Alexandrov-surfaces in the sense of Section 3.

Using a different approach (and being unaware of Fu’s results) Kuppe
and Brocker also studied integral geometric properties of higher-dimensional
subanalytic (and more generally definable) sets. The basic notion in their
work is that of a tame set. This is a Whitney stratified set such that the
tangent bundle itself is Whitney stratified and such that the projection map
is submersive on each stratum. Compact definable sets are shown to be
tame sets.

The new ingredient in the study of tame sets is stratified Morse theory.
See [108] for stratified Morse theory and [128] for a short proof of the main
theorem. The normal Morse index of this theory is used in order to define
a modified tube volume. Afterwards, it is shown by counting critical points
of the distance function, that formula (5) is satisfied if one of the sets is
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a closed ball (this is called kinematic ball formula). With approximation
of the tame set by manifolds with boundaries it follows that the principal
kinematic formula (5) still holds and that the Lipschitz-Killing curvatures
are invariant under definable isometries.

These studies are generalized to ambient spaces of constant sectional cur-
vature in [28].

For further information concerning isometry classes of definable sets,
Lipschitz-Killing measures and characterizations thereof, see [27].

4.10. Scalar curvature measure. In the case of Riemannian manifolds,
one of the Lipschitz-Killing measures equals (up to a constant 4x) the in-
tegral over the scalar curvature, see [22]. It is thus natural to consider the
same quantity in the case of subanalytic sets and to seek analogies with the
smooth case.

This program was carried out by Bernig ([22], [23],[24]). The main results
relate two different generalizations of curvatures, namely the metric theory
of Section 3 and the integral geometric approach of Brocker-Kuppe.

Recall that in the smooth setting, a bound on the sectional curvature
implies a bound on the scalar curvature:

K>k = s>n(n—1)k
K<k = s<n(n-1)k

Here n is the dimension of the manifold.

Bernig generalizes these implications to the setting of compact connected
subanalytic (or more generally definable) sets. The hypothesis K > k is
replaced by the assumption that the space is an Alexandrov space with
curvature bounded below by x. The used metric is the induced length metric
on the space. This is indeed a geodesic metric, which follows from the fact
that the space admits a Whitney-stratification. See [91] and [146] for further
information on this metric.

Since the scalar curvature measure of a subanalytic set is a signed mea-
sure, the inequality scal > n(n — 1)k only makes sense for x = 0. However,
one can replace this inequality by one for measures, namely scal(X,—) >
n(n — 1)k vol(X,—) (n denotes the dimension of the set). The main theo-
rem of [22] is that if X is a connected compact definable set of dimension
n which is an Alexandrov space with curvature bounded from below by k,
then scal(X,—) > n(n — 1)k vol(X,—). The proof uses a local study of
geodesics near the different strata. Although geodesics on definable sets are
very difficult objects, it is still possible to get information on angles by using
comparison with the outer distance (that of the ambient space).

The analogous result for upper curvature bounds is the subject of [23].
Here one needs a topological assumptions, namely that the space is a topo-
logical manifold. Counter-examples are given showing that this assump-
tion is necessary. Then the main theorem states that an upper bound
on the sectional curvature in Alexandrov’s sense (Section 3) for a con-
nected compact definable topological manifold X implies that scal(X, —) <
n(n — 1)k vol(X, —). The proof relies on the possibility of finding a Verdier
stratification for X. The other ingredient is a law of reflection at strata of
codimension 1.
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The generalization of Hilbert’s variational formula is contained in [24] and
will be presented in Section 6.

5. GENERALIZATIONS USING GEOMETRIC MEASURE THEORY, THE
NORMAL CYCLE OF SINGULAR SPACES

5.1. Flat distance. We saw in the section about metric aspects how metric
spaces arise by completing the space of compact Riemannian manifolds un-
der Gromov-Hausdorff distance. Taking another, more complicated distance
will yield an embedding of the space of submanifolds in a certain space of
currents.

The framework for these investigations is Geometric Measure Theory.
The reader is referred to [89] for an overview of this theory and to [88] for
a detailed treatment.

We consider the unit normal bundle of an n-dimensional compact sub-
manifold X ¢ RV, n < N. It is an N — 1-dimensional manifold in the
sphere bundle SRY = RY x SN=1 It has a canonical orientation induced
from RY and may thus be considered as an N — l-current in SR™. The
action on an N — 1-differential form is given by integration. Since the unit
normal bundle has no boundary, we get in fact a cycle, which is the normal
cycle of the submanifold.

More generally, the same works if the ambient space is replaced by some
Riemannian manifold (M,g). Let us denote by EN~1(SM) (respectively
En—1(SM)) the space of N — 1-forms (respectively compactly supported
N — 1-currents) on the sphere bundle SM. Then we obtain a map which
associates to a compact submanifold X € M a cycle X € Ex_1(SM).

One of the basic tools in Geometric Measure Theory is the flat distance.
We do not want to go into details, but for our purpose it is enough to know
that convergence in the flat topology implies weak convergence. The space
of compact submanifolds is thus a subspace of Ex_1(SM) and we endow it
with the induced topology and distance. The natural question now is: what
is a good completion for this space? In order to get useful results, we want
the completion to be as small as possible, but on the other hand we want to
have a simple description of it.

Let us first state some easy properties of the normal cycle of a Riemannian
manifold. As we have seen, it is a cycle. Moreover, it is a compactly sup-
ported integer-multiplicity rectifiable current (with multiplicities 1) in the
sense of [88]. If o denotes the canonical 1-form on SM, the normal cycle
vanishes on a: Xra = 0. Such currents are called Legendrian. The space
of integer-multiplicity rectifiable compactly supported Legendrian cycles is
complete with respect to the flat distance by the famous Federer-Fleming
compactness theorem ([88]). This is the completion we looked for and we
call it the space of normal cycles (not to be confused with normal currents,
although they are trivially normal currents).

Besides compact submanifolds, many other classes of spaces can be em-
bedded in the space of normal cycles. This is the case for (compact) PL-sets,
sets with positive reach, the convex ring, unions of sets of positive reach in
the sense of Zahle, subanalytic sets or definable sets. Briefly: all the classes
considered so far.
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5.2. PL and sets with positive reach. The normal cycle was first intro-
duced by Wintgen in the PL-case and by Zahle for sets with positive reach.
A related, although only partial result was proven by Baddeley in [11]. For
sets with positive reach, the normal cycles consist of all normal vectors,
counted with multiplicity 1. For PL-spaces, one has to count multiplici-
ties in the same (Euler-additive) way we did in the previous section. The
main observation of Wintgen and Zahle is that in both cases the Lipschitz-
Killing invariants can be obtained by integrating universal differential forms
®; € ENT1(SRYN) over the normal cycle of the set:

Ai(X,B) = XLB(®;) B Borel subset of RY (6)

From this description, it follows at once that the (global) Lipschitz-Killing
invariants are continuous under the flat distance.

Several authors ([165], [99], [67]) have shown (with different degrees of
generality) that if a sequence of PL-spaces approximates a submanifold in a
suitable geometric sense, then the normal cycles converge in the flat topol-
ogy. The flat distance between the normal cycle of a body with smooth
boundary and the normal cycle of a closely inscribed geometric setis bounded
from above in terms of geometric quantities. In particular, using a sequence
of restricted Delaunay triangulations of the boundary, one gets a very good
convergence of the normal cycles ([67]).

The next case is that of a finite union of sets with positive reach (with
the condition explicitly stated in 4.8). Here again, one has at most one way
to define normal cycles if one imposes Euler-additivity, which means here

X+YV=XNY+XUY (7)
Zahle was able to show that this extension really exists and that it has the
expected properties.

5.3. Subanalytic sets. Much more complicated was the construction of
the normal cycle for compact subanalytic sets. It was carried out by J. Fu
in [102], based on [95], [96] and [97]. He addresses the more general problem
which sets do admit normal cycles and under which conditions they are
unique. The first question can, up to now, only answered partially, whereas
there is a satisfactory uniqueness result concerning the second question.

The basic notion in Fu’s work is that of a Monge-Ampére function. This
is a function f on a manifold M such that df exists in a weak, measure-
theoretic sense as current in the cotangent bundle S* M, denoted by [df]. An
aura for a set X C M is a non-negative Monge-Ampere function f such that
f71(0) = X. In order to develop his theory, Fu needs an additional assump-
tion on the generalized differentials of such an aura, called non-degeneracy.
In general, compact subanalytic sets do not have non-degenerate auras, but
here the corresponding assumption is that the aura be subanalytic.

As an example, sets with positive reach admit non-degenerate auras, more
precisely the distance function is such an aura. This follows from Bangert’s
alternative description of sets with positive reach mentioned above. Com-
pact subanalytic sets admit subanalytic auras.

Let X C M admit a non-degenerate aura f. Then one can approximate
X by the sublevels f~1([0,¢)). These sets admit a normal cycle constructed
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from the differential current [df]. The normal cycle of X is defined to be the
limit of these normal cycles as € tends to 0. The non-degeneracy condition
implies that the limit exists. In the subanalytic case, the limit exists by
properties of subanalytic currents.

The obvious problem is that X may have different non-degenerate auras
and potentially different normal cycles. Here is where Fu’s uniqueness result
applies. Stating this result would require much notation from Geometric
Measure Theory and from Fu’s papers, so we will just give the idea. First, a
Chern-Gauss-Bonnet theorem is proven (for non-degenerate or subanalytic
auras) by a deformation argument. Working locally, one can suppose that
M = RN, If T is the normal cycle for X, then one can compute from T the
Euler-characteristic of the set

{r e X: (x,v) <t}

where v € SNt € R.

Fu’s uniqueness result states that there is at most one Legendrian com-
pactly supported integer-multiplicity rectifiable cycle T" which yields these
Euler-characteristics for almost all v,¢. Based on Chern-Gauss-Bonnet the-
orem, he then shows that any limit cycle for an approximation with the help
of non-degenerate auras has these properties. Therefore, the construction
is indeed independent of the choice of a non-degenerate (resp. subanalytic)
aura and we get a unique (integer-multiplicity, rectifiable Legendrian) cycle
X associated to X.

The Euler-additivity (7) is still satisfied and Lipschitz-Killing measures
can be introduced by Equation (6). Fu shows furthermore that these mea-
sures only depend on the (subanalytic) isometry class of the set X and not
on the embedding (compare with the results of Brocker-Kuppe).

5.4. Kinematic formula. The principal kinematic formula (5) remains
true for subanalytic sets. Fu derives this formula from an abstract kine-
matic formula for cycles. Replacing the normal cycles for subanalytic sets
then yields an expression of the form (5), with unknown real constants
CN,ijk- By replacing simple examples for X and Y, one can compute these
constants. Of course, they are the same as in all the cases considered above.
The abstract kinematic formula is proved by bundle-theoretic and mea-
sure theoretic methods. The main technical tool is that of current multipli-
cation in bundles, a natural operation dual to that of fiber-integration.

5.5. More general singular sets. It follows from Fu’s uniqueness result
that a compact subset X C M can have at most one normal cycle. A difficult
challenge is to determine which sets have this property.

As we said above, sets with positive reach and compact subanalytic sets
admit normal cycles. Following the same lines of proof as in Fu’s work, one
can show that all compact definable sets admit normal cycles.

By formula (6), one can associate curvature measures to any set admit-
ting a normal cycle. If the dimension of the set is n (if some notion of
dimension is defined), then A, _2(X,—) can be considered as a generalized
scalar curvature measure. Besides the results in the cases of definable sets
mentioned in 4.10, I do not know of generalizations of classical results about
scalar curvature to these more singular sets.
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6. Ricci AND RIEMANNIAN TENSOR, VARIATIONAL FORMULAS

Resuming the last two sections, we see that on large classes of singular
sets, we can define curvature measures. There are several ways to character-
ize them: by using some modified tube volume, by inspecting the terms in
the principal kinematic formula or by integrating universal differential forms
over the normal cycle of the set. Lipschitz-Killing measures are real-valued
measures.

When seeking analogous generalizations of the Ricci and Riemannian ten-
sors, it is natural to look for tensor-valued measures. There is a technical
problem to overcome: namely on general ambient spaces it is not clear what
a tensor-valued measure is. Bernig uses the notion of distributional tensor
field to overcome this difficulty. The definition mimics the definition of cur-
rents, but replaces smooth differential forms by smooth tensor fields. The
dual objects are called distributional tensor fields. Then one can define a
notion of mass and sees that in Euclidean space, distributional tensors of
finite mass are ordinary tensor-valued measures.

6.1. Cohen-Steiner and Morvan’s tensor-valued measure. In a se-
ries of papers ([66], [67], [68]), Cohen-Steiner and Morvan studied tensor-
valued invariants of polyhedral and smooth surfaces. The idea is to integrate
tensor-valued forms over the normal cycle. If the ambient space is Euclidean,
then the measure associated to a full-dimensional compact set with smooth
boundary is obtained by integrating over the boundary the second funda-
mental form. If the ambient space is a Riemannian manifold, then one
still gets the second fundamental form but has to interprete the result as a
distributional tensor of type (0,2) in the sense of [25].

In dimension 3, they also construct another tensor-valued measure which
yields as result not the second fundamental form, but the form which has
the same eigenvectors but flipped eigenvalues. We will see later that this
tensor-valued measure could be called Einstein measure, since it corresponds
in a natural way to the Einstein tensor.

Using Delaunay triangulations, one can approximate a body in R? with
smooth boundary by a sequence of polyhedra. The general approximation
theorem for normal cycles (see 5.2) implies fast convergence of the corre-
sponding measures.

In [66] and [65] the Einstein measure is applied in computational geom-
etry. The idea is that the geometry of a surface changes quickly in those
directions where the second fundamental form is big. Since such directions
have to be drawn at a small scale, one is very naturally led to the second
fundamental form with flipped eigen-values.

6.2. Intrinsic distributional invariants. Closely related is ([25]), where
Bernig gives the higher-dimensional analogues of the Einstein measure of
Cohen-Steiner and Morvan. The basic idea is that of an intrinsic distribu-
tional invariant. One is interested in curvature properties of a singular set
and not in the properties of the embedding. If for instance a subanalytic
set is embedded in two different, isometric ways into Riemannian manifolds,
then the corresponding Lipschitz-Killing measures are the same. Intrinsic
invariants have the same kind of behavior, there is a compatibility condition
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for different embeddings which can be interpreted as independence of the
embedding.

Bernig then studies the space of all intrinsic distributional invariants.
He defines a sequence of tensor-valued intrinsic invariants starting with
the Lipschitz-Killing measures. The next term is the generalization of
Cohen-Steiner and Morvan’s Einstein measure to higher-dimensional ambi-
ent spaces. This invariant can be defined on any space admitting a normal
cycle, since as the Lipschitz-Killing curvatures it is defined via integration
over a universal differential form. When evaluated for a compact submani-
fold, one obtains the (dual of the) Einstein tensor ric —§g. In general, this
invariant can therefore be thought of as analogue of the Einstein tensor. Its
trace is (a multiple of) the scalar curvature. Using this invariant, Bernig
shows how to compute the Einstein tensor of a Riemannian manifold from
its PL-approximations. He also studies the Einstein invariant on subanalytic
and convex sets.

The next term in the series yields an intrinsic distributional invariant
which on submanifolds is given by integration over the (dual of the) cur-
vature tensor R := R — ric-g + 19 - 9. Here R denotes the Riemannian
curvature tensor, ric the Ricci tensor, s the scalar curvature and the dot
is the Kulkarni-Nomizu product transforming two symmetric (0, 2)-tensors
into a (0, 4)-tensor having the same symmetry properties as R. The tensor
R is divergence-free (as the Einstein tensor) and its trace is a multiple of the
Einstein tensor. It seems that R does not appear naturally in Riemannian
geometry.

6.3. Ricci curvature bounds. It is an interesting fact that the Ricci ten-
sor and the Riemannian curvature tensor do not appear as intrinsic distri-
butional invariants. This should be related to the fact that they are not
divergence-free.

However, it is possible to define Ricci curvature bounds for subanalytic
spaces. This is analogous to the situation for sectional curvature, where the
bounds could be generalized to metric spaces, although the precise values
were not defined.

Bernig ([26]) gives the definition of compact subanalytic sets with upper
or lower bounds on the Ricci curvature. The main result generalizes the
following implications, which are all well-known and easy in the case of
Riemannian manifolds.

Theorem 6.1. Let X C (M,g) be an n-dimensional compact subanalytic
subset of the real-analytic Riemannian manifold (M, g). Suppose that X is
a connected topological manifold.

o If X is an Alexandrov space with curvature bounded below by x, then
the Ricci curvature is bounded below by (n — 1)k.

e If X has Ricci curvature bounded below by (n — 1)k, then its scalar
curvature is bounded below by n(n — 1)k.

o If X is an Alexandrov space with curvature bounded from above by k,
then its Ricci curvature is bounded from above by (n — 1)k.

e If X has Ricci curvature bounded from above by (n — 1)k, then its
scalar curvature is bounded from above by n(n — 1)k.
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The basic idea of proof is similar to that in [22] and [23]. On the other
hand, the use of quasi-geodesics introduced by Petrunin and Perelman ([142])
considerably simplifies the proof.

Although this theorem seems to be complete, the study of Ricci curvature
bounds is far from being finished. Such simple questions as the generaliza-
tion of Myer’s theorem remain open.

6.4. Variational formulas. Hilbert’s variational formula for compact smooth
Riemannian manifolds (M, ¢g) concerns the total scalar curvature of the man-
ifold, i.e. scal(M,g) := [ s Stg with pg the volume density. This is consid-
ered as a functional which associates to a Riemannian metric a real number.
Hilbert computed the directional derivatives in terms of the Einstein tensor.

More precisely, let h be a symmetric bilinear form and set g; := g + th,
where t is a sufficiently small real parameter. Then g; is again a Riemannian
metric and we have

d s
—_— S 1 = — — 1] h,
i, scal(M, g;) /M <29 ric, >,Ug (8)

Since we know what the generalization of the total scalar curvature to
compact subanalytic sets is (namely one of the Lipschitz-Killing invariants
multiplied by 47) and since we have defined the Einstein tensor of such
spaces, it is natural to ask if formula (8) still holds in this setting. This
is the main result of [24]. In fact, this is the way the Einstein tensor was
found. Instead of changing the metric of the space, one takes a variation of
the metric of the ambient space.

The proof relies heavily on the normal cycle construction. It permits a
reduction of the difficult geometry of such spaces to calculations with dif-
ferential forms (these calculations are still non-trivial). Instead of taking
subanalytic sets, one can as well consider the class of compact PL-spaces.
Then one has two ways of computing the left hand side of equation (8),
namely by the main variational formula of [24] and by a direct computa-
tion. Therefore, the difference of the results has to vanish. This implies the
classical Schléfli formula for PL-spaces, as well as all known generalizations
([59], [151], [155]).

Another application of this variational formula is a proof of the Chern-
Gauss-Bonnet theorem by a cutting argument.

When the metric is fixed, but the set moves along a smooth vector field,
the directional derivatives of the Lipschitz-Killing invariants were computed
by J. Fu ([104]) in the case of an ambient space of constant curvature. The
(easy) generalization to general ambient spaces is contained in [25].

7. FURTHER GENERALIZATIONS

In this section, we collect and describe some further generalizations of
the classical curvature notions. We do not claim that this description is
complete, but we tried to collect as much material as possible.

7.1. Lipschitz-Killing curvatures on angular partially ordered sets.
Budach ([36]) considers homogeneous finite partially ordered sets. Homoge-
neous means that all maximal chains z7 < x9 < -+ < x have the same
length k. The basic example for such sets are homogeneous n-dimensional
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simplicial complexes, i.e. simplicial complexes such that each face is con-
tained in an n-dimensional simplex.

The incidence algebra of a homogeneous finite partially ordered set P
consists of all real valued functions f : P x P — R such that f(z,y) # 0
only if z < y. Besides the obvious sum and product, one has the following
associative multiplication:

(fo)(@,y) = > f@,2)9(2y)

z<z<y

In the case of a finite cell complex, one has three distinguished elements
in this algebra: the interior angle function «, the exterior angle function (3
and the volume function. The Sommerville and McMullen equations relate
«a and [, in particular 8 can be computed from .

Budach defines an angular partially ordered set as a homogeneous finite
partially ordered set, endowed with an “interior angle” function and a “vol-
ume function”. The exterior angle function is computed by the Sommerville
and McMullen relations.

The Lipschitz-Killing curvatures of an angular partially ordered set are
defined like in the case of PL-spaces: sum over elements of rank ¢ and
multiply the volume by the (total) exterior angle.

Budach shows that the Lipschitz-Killing curvatures remain unchanged
under subdivision and satisfy a product formula as in the PL-case (subdi-
visions and products are defined in the setting of angular partially ordered
sets).

7.2. Combinatorial Ricci curvature. A different approach to combina-
torial analogues of curvature was given by Forman ([92],[93]). Based on a
Bochner-like decomposition of the combinatorial Laplacian, he defines Ricci
curvature bounds for cell complexes. This is a purely combinatorial notion,
no metric is involved. It depends only on how many neighbors a given cell
has. In contrast to the scalar curvature measure and to the Ricci curvature
bounds of [26], Forman’s curvature bounds only depend on low-dimensional
cells, i.e. cells of dimension at most 2. He then shows the analogue of Myer’s
theorem. For this, he defines combinatorial analogues of Jacobi fields and
mimics the classical proof. He also shows the analogue of Bochner’s theorem.

Remember that, by [135], any smooth manifold of dimension at least 3
admits a Riemannian metric with negative Ricci curvature. The combina-
torial counter-part is that any simplicial complex, which is a manifold of
dimension at least 2, has a subdivision with strictly negative Ricci curva-
ture. Note that this is even true in dimension 2 which implies that there is
no Gauss-Bonnet theorem for this Ricci curvature.

7.3. Cheeger-Colding’s approach to Ricci curvature. In a series of
papers, Cheeger and Colding ([52],[54],[56],[55]) study limits of (pointed) se-
quences of Riemannian manifolds with a lower bound on the Ricci curvature.
They show among other things that the n-dimensional Hausdorff measure of
a ball in the limit space is the limit of the volumes of the n-dimensional balls
in the manifolds of the sequence. If the sequence is non-collapsing, which
means that the volumes of the unit balls around the base points remain
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uniformly bounded from below by a positive constant, then it follows that
the volume comparison of Bishop-Gromov still holds for the limit space.

In the collapsing case, one has to renormalize the n-dimensional Hausdorff
measure in order to obtain a limit measure. Then the volume comparison
still holds, but the limit measure depends on the choice of a subsequence.

One can define tangent cones for the limit set. A regular point is one where
the tangent cone is unique and isometric to some Euclidean space. The set
of singular points is shown to have measure zero (for the limit measure).

The study of Ricci curvature reveals analytic aspects of curvature. We
refer the reader to the survey papers [69], [70] for further information.

7.4. Non-commutative scalar curvature and heat equation approach.
The idea of replacing a space by an algebra of functions acting on it is cen-
tral in algebraic geometry. Instead of considering an algebraic variety, one
studies the algebra of algebraic functions on it. One can then define notions
(such as dimension) in purely algebraic terms, which make sense for (com-
mutative) algebras independent of their origin as function algebra over an
algebraic variety.

This old idea of algebraic geometry has a relatively recent counter-part in
differential geometry. Instead of working with a space (Riemannian mani-
fold), one works with an involutive algebra A of operators on a Hilbert-space
‘H. A fixed self-adjoint operator D plays the role of the inverse of the metric
element ds. The triple (A, H, D) is called spectral triple by A. Connes ([72]).
A compact Riemannian manifold endowed with a spinor bundle .S induces
the spectral triple (C°(M), L?(M,S), D), where D is the Dirac operator
acting on spinors. We set ds := D1,

One can recover basic geometric invariants from the spectral triple only,
and there is no need to assume that 4 is commutative (as in the case of
Riemannian manifolds). For instance, the dimension can be defined using
the asymptotic behavior of the eigen-values of D. However, this is not a
single number, but a subset of C. Concerning curvature, one can at least
define the total scalar curvature of such a spectral triple.

More precisely, one can build an integral -f T' for operators like T' = ds.
It depends on the Dizmier trace, which in turn is related to the asymptotic
development of the eigenvalues of v T™*1'. Then the total scalar curvature of
a compact Riemannian manifold (M, g) can be obtained as

][ds”2 = cn/ Siig
M

Let us explain why this formula is not so surprising.

First note that ds is the inverse of the Dirac operator D and A := D*D
is the Laplace operator. Therefore, the integral on the left hand side is
related to the asymptotic development of the eigenvalues of A. Now recall
the following formula (based on the trace of the heat kernel of (M,g)) for
the eigenvalues \; of the Laplacian:

(o] o
e M~ (dnt) "2 )yt
=0 k=0
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with real numbers ay ([152]). The first coefficient is given by the volume of
(M, g): a9 = vol(M,g). The next one is in fact the total scalar curvature:
a; = % I} 1 Stg-  The other coefficients are polynomials in the curvature
tensor and its derivatives, but it seems to be hard to extract geometric
information from them ([107], [152]).

7.5. Ricci curvature and entropy. Unlike sectional curvature, which is
a purely metric quantity (see Section 3), Ricci curvature depends not only
on the metric, but also on an underlying measure (which is the volume
measure in the smooth case). One may try to define Ricci cuvature bounds
for metric measure spaces. A metric measure space is a metric space (X, d)
endowed with a measure p such that the distance function d: X x X — R
is measurable with respect to p x pu.

One possible generalization of lower Ricci curvature bounds is based on
the entropy of measures ([158]). For a metric space (X, d), let P?(X,d) de-
note the space of probability measures v on (X, d) such that [ d*(z,y)v(dy) <
oo for all # € X. The L2-Wasserstein distance between v, s € P?(X,d) is
defined as

v

1
d¥ (v =1 2 i
o (v1,v2) := inf d(x1,x9)*v(dz1das)
XxX

where the infimum runs over all measures v on X x X with v(Ax X) = v;(A)
and v(X x A) = vy(A) for all measurable sets A C X.
The entropy of v € P?(X,d) is defined as

Ent(v / — log

if v is absolutely continuous with respect to p and fX i log ]er,u < o0
and Ent(v) := oo otherwise.

A possible definition of Ricci curvature bounds for metric measure spaces
is given by the following. Recall that a real-valued function f on a geodesic
metric space (X, d) is called k-convex if for each unit speed geodesic v : [ —
X (where I C R is an interval) the function ¢ — f(v(t)) — §¢? is convex on
I.

Definition 7.1. A metric measure space (X,d, ) has Ricci curvature
bounded from below by & if the function Ent : P?(X,d) — R U {cc} is
K-CONVEL.

One of the main results of [158] is that a connected Riemannian manifold
with its volume measure has Ricci curvature > x in the above sense if
and only if it has Ricci curvature > k in the usual sense. They also give
characterizations of lower Ricci curvature bounds on manifolds in terms of
heat kernels and in terms of uniform distributions on distance spheres.

7.6. Generalized Gauss graphs and unit normal bundles. Closely re-
lated to the normal cycles are generalized Gauss graphs and generalized unit
normal bundles. A generalized unit normal bundle is a Legendrian current
with a further positivity condition. Also generalized Gauss graphs encode
curvature information. One can indeed recover the Riemannian curvature
tensor from the Gauss graph of a Riemannian manifold and this idea is used
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to define a Riemannian curvature tensor for generalized Gauss graphs in [79].
In contrast to the curvature tensors of Subsection 6.2, these objects depend
not only on a point in the base space, but also on a direction. The reader can
consult the papers by Delladio ([78], [79], [80], [81]) and by Anzelotti et al.
([8], [9], [10]) for definitions of these currents and applications to geometric
variational problems.

8. SOME QUESTIONS AND SPECULATIONS

Let us finish this survey with some open questions and some speculations.
The choice for these problems, as the choice of the content of the whole
paper, is of course subjective and reflects my personal taste.

Let us start with some questions concerning PL-spaces. The study of
PL-spaces with curvature bounded from above or below seems to be a
promising field of research. There are many results (see [32]), but mainly
in the case of upper curvature bounds. One can formulate questions from
Riemannian geometry in this setting. For instance, is it true that non-
negative sectional curvature in Alexandrov sense implies non-negative Euler-
characteristic (Hopf-conjecture)? The corresponding question for non-positively
curvature is known under the name of Chern-Hopf-Thurston conjecture ([76])
and also open.

Since the Chern-Gauss-Bonnet-integrand of a 4-dimensional non-negatively
curved manifold is non-negative, one may expect that the lowest Lipschitz-
Killing measure of a non-negatively curved 4-dimensional PL-space is non-
negative. In higher dimensions, one would rather expect this to be false (as
in the smooth setting). However, the global Lipschitz-Killing invariant could
still be positive. Also it might be true that non-negative sectional curvature
implies that the n — 4th Lipschitz-Killing curvature is a positive measure
and it would be interesting to show this fact on wide classes of spaces, such
as manifolds, PL-spaces, subanalytic spaces.

The advantage in working with PL-spaces is that one can try to prove
things by induction on the dimension, the spherical sections are M-simplicial
complexes in the terminology of [32]. If the space has non-negative (non-
positive) curvature, then the spherical sections have curvature at least 1 (at
most 1). On the other hand, one can try to approximate manifolds by PL-
spaces. As was described above, the Lipschitz-Killing measures converge.
But if the manifold has non-negative curvature, can we find an approxima-
tion by non-negatively curved PL-spaces? If we use the Lipschitz-distance
([120]), then the answer is no, since only manifolds whose curvature tensor
is positive in a strong sense can be approximated in this way ([145]). Maybe
with other distances such as the flat distance one gets better results. Also
an analogous approximation result in the non-positively curved case is in
general false (see [77]), except for hyperbolic manifolds ([48]).

Another big question is to which spaces the theory of normal cycles ap-
plies. Fu’s uniqueness result shows that there can be at most one normal
cycle associated to a compact set, but which sets do admit normal cycles?
The study of this class seems to be promising, since it is a good framework
for integral-geometric studies. There were two attempts ([104],[82]) to prove
that the projection of the carrier of a normal cycle is a C?-rectifiable set in
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the sense of [9], but, according to J. Fu, both “proofs” have serious gaps, so
the problem seems to remain open.

In the metric theory, one gets a lot of information about how a sequence
of manifolds with lower curvature bound can degenerate (collapse) to an
Alexandrov space. An analogous theory for the flat distance would be highly
interesting. For this, one considers sequences of submanifolds in a fixed
ambient space which converge in the flat topology to some normal cycle.
What can be said about this convergence? In connection with Federer-
Fleming’s compactness theorem, this could yield powerful tools for the study
of submanifolds as well as singular spaces.

A related problem is to develop a more intrinsic theory, i.e. one that
does not (or less) depend on an ambient space. One first try could consist of
identifying isometric embeddings of a singular space in ambient spaces. Then
one looks for invariants of the equivalence classes, they will be quantities of
the singular space and not of the embedding. A similar approach was worked
out by Pflaum ([146]) concerning smooth structures on stratified spaces.

A different problem is to relate the non-commutative approach of Connes
to the theory of Lipschitz-Killing curvatures. It could be true that all these
curvature measures (and not only the total scalar curvature) can be recov-
ered from the spectral triple alone (in the case of a compact Riemannian
manifold). However, I think that the total scalar curvature only appears
because it is a spectral invariant, whereas no formula expressing the other
Lipschitz-Killing curvatures as spectral invariants seems to be known (except
for Euler characteristic and volume of course). However, for the Laplacian
acting on forms, Donelly [83] gave such an expression for Lipschitz-Killing
curvatures. It is probably a very hard problem to prove an analogue of his
formula for convex subsets. Cheeger [51] gave such a formula for piecewise
linear spaces.

The same kind of questions can be raised for the entropy approach to
Ricci curvature (7.5). What does positive Ricci curvature on a piecewise
linear space or on a compact subanalytic set means? Of course, the PL-
case should be relatively easy, whereas the subanalytic case is probably too
hard. Maybe somewhere between there are more interesting classes to study:
manifolds with boundary or manifolds with corners.
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